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Field observations indicate that the height of submarine levees decays with distance
from the channel either exponentially or according to a power law. This investigation
clarifies the flow conditions that lead to these respective shapes, via a shallow water
model for the overflow currents that govern the levee formation. The model is based
on a steady state balance of sediment supply by the turbidity current, and sediment
deposition onto the levee, with the settling velocity and the entrainment rate appearing
as parameters. It demonstrates that entrainment of ambient fluid is the determining
factor for the levee shape. For negligible entrainment rates, levee shapes tend to
exhibit exponential profiles, while constant rates of entrainment or detrainment result
in power law shapes. Interestingly, whether a levee has an exponential or a power
law shape is determined by kinematic considerations only, viz. the balance laws for
sediment mass and fluid volume. We find that the respective coefficients governing the
exponential or power law decay depend on the settling speeds of the sediment grains,
which in turn is a function of the grain size. Two-dimensional, unsteady Navier–Stokes
simulations confirm the emergence of a quasi-steady state. The depositional behaviour
of this quasi-steady state is consistent with the predictions of the shallow water
model, thus validating the assumptions underlying the model, and demonstrating its
predictive abilities.

1. Introduction
The floor of the deep sea exhibits submarine channels (e.g. Normark, Posamentier &

Mutti 1993). These channels form the conduits by which sediment is transported into
deep marine basins by turbidity currents (gravity-driven turbid mixtures of sediment
and water) that may be catastrophic, lasting only for a few hours or sustained over
periods of days or weeks (Normark & Piper 1991; Piper & Savoye 1993; Pirmez &
Imran 2003). The channels range from a few metres to a few kilometres in width, up
to several hundreds of metres deep and may be tens to thousands of kilometres in
length (Clark & Pickering 1996; Huebscher et al. 1997; Babonneau et al. 2002). Many
of these channels are flanked by levees, analogous to natural river levees, formed by
deposition of sediment from parts of the flows that spilled out of the channels (e.g.
Hiscott, Hall & Pirmez 1997). Since individual levees may achieve thicknesses of tens
to a few hundreds of metres, and widths perpendicular to the channel commonly of
several kilometres to tens of kilometres, they contain very large cumulative masses of
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Figure 1. Cross-section of a turbidity current propagating along a submarine channel flanked
by levees. The shape of these levees is governed by the depositional behaviour of lateral
overflow currents, which may entrain ambient fluid. The vertical scale is greatly exaggerated.

sediment. Moreover, stacked channel–levee systems (in which younger channels and
their levees occupy the topographically lower regions between older levees) form a
high proportion of the thick, dominantly fine-grained sediment accumulations of the
continental slope and rise, especially offshore from major river systems such as the
Indus, Bengal, Congo and Amazon (Kolla & Schwab 1995; Huebscher et al. 1997;
Babonneau et al. 2002).

The typical shape of a submarine channel levee is illustrated schematically in the
cross-section shown in figure 1. On the basis of observations of levees on the modern
sea floor, Skene, Piper & Hill (2002) considered that the thickness of the sediment
accumulation forming the levee decays exponentially away from the channel.
However, Kane et al. (2007) subsequently established a power law decay in thickness
of ancient submarine levee deposits, and recent work using seismic surveys in the
shallow subsurface below the sea floor suggests that both types of thickness decay
may occur (Kneller et al., in preparation). The present investigation aims to clarify the
differences in flow conditions over the levee that may result in these respective levee
shapes.

While there have been only limited attempts to model sediment deposit profiles
in the direction perpendicular to the main flow, a number of investigations have
addressed the issue of streamwise variations in the deposit thickness, e.g. the shallow
water analysis by Bonnecaze, Huppert & Lister (1993). Hallworth et al. (1993) draw
attention to the role of entrainment in such flows, and develop corresponding scaling
laws via dimensional analysis. A recent review of scaling analysis approaches to
deposition problems is provided by Srivatsan, Lake & Bonnecaze (2004).

The case of turbidity currents propagating down slopes was addressed by
Bonnecaze & Lister (1999). Dade, Lister & Huppert (1994) develop a simplified
model for sedimenting surges propagating down a slope, by extending earlier work
of Beghin, Hopfinger & Britter (1981) for corresponding non-depositing currents.
By incorporating a fluid entrainment rate in the form of a fraction of the average
surge speed, their model predicts a region of power law decay, followed by an
exponential decay region further downstream. For a more general discussion of the
role of entrainment in geophysical fluid flows, cf. Turner (1968, 1986). An overview
over these investigations, and the underlying tools such as box models and shallow
water equations is provided by Huppert (1998). This paper also addresses the case
of polydisperse suspensions, and the role of a less dense interstitial fluid.
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More recent efforts to model turbidity currents and the deposits they form have
been based on three-dimensional Navier–Stokes simulations, cf. Necker et al. (2002,
2005). These authors observe good agreement with corresponding laboratory data
of de Rooij & Dalziel (1998) regarding both temporal and spatial development
of the deposit layer thickness in the streamwise direction. In the following, we
will employ both shallow water equations and Navier–Stokes simulations towards
analysing thickness variations of submarine levees perpendicular to the propagation
direction of the turbidity current.

Section 2 develops a shallow water model for the overflow current. This model
is based on a steady state balance between the sediment supplied to the overflow
current by the main turbidity current, and the deposition of sediment onto the levee
by the overflow current. The rate at which the overflow current entrains ambient fluid
is seen to play a crucial role in determining the levees decay rate. Two-dimensional,
unsteady numerical Navier–Stokes simulations are conducted in § 3, and their results
are discussed in § 4. A comparison between the simulation results and the shallow
water model is provided in § 5.

2. Model
In order to analyse the formation of levees, we focus on a model of the cross-section

of a deeply submerged turbidity current, cf. figure 1. While the main flow direction of
the turbidity current is out of the plane, a portion of the current overflows its banks in
the lateral direction. Gradients in the main flow direction of the current are assumed
to be small, so that they are negligible in comparison with gradients in the cross-
sectional plane. We assume that the turbidity current is maintained over sufficiently
long times for an approximately steady state balance to form between the supply of
sediment from the main turbidity current to the overflow current, and its loss through
sedimentation. Erosional effects are not considered in the present analysis. Note that,
for this reason, the model to be developed in the following would not be applicable
to the downstream development of the channel bed, whose development is governed
by a balance of erosion and deposition. The quasi-steady, spatial distribution of the
sediment deposit rate in the spanwise x-direction will then determine the shape of
the levee. Field observations from ancient levees now exposed onland, and from the
ocean confirm the generally quasi-steady (though episodic) and generally non-erosive
nature of flow over deep marine levees (Hiscott et al. 1997; Kane et al. 2007).

In deriving a set of shallow water equations governing the overflow current, we make
several simplifying assumptions. The vertical velocity is assumed to be sufficiently
small so that it can be neglected compared to the spanwise velocity u. We furthermore
assume that the overflow current is well mixed over its entire vertical height h, so
that both the sediment concentration, φ, and the spanwise velocity u are functions of
the spanwise coordinate x only. Hence the current is fully characterized by u(x), h(x)
and φ(x).

Let us consider a control volume ABCD of the flow, cf. figure 2. Since a typical
terrain slope is of the order of 2 degrees at most, and usually a lot smaller than that,
we neglect its effect and assume that the current flows over a horizontal bottom BC,
cf. also Britter & Linden (1980), Bonnecaze & Lister (1999) and Birman et al. (2006).
Nonetheless, it may be possible that for some levees this small slope might suffice
to generate transitional flow. The inflow of sediment through boundary AB is then
balanced by sediment deposition along BC, and by the outflow of sediment through
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Figure 2. The shallow water model is obtained from the conservation principle for sediment,
fluid and momentum in the control volume ABCD.

CD . We obtain
∂ (φuh)

∂x
= −φus, (2.1)

cf. Bonnecaze et al. (1993). Here, us is the constant settling velocity of the monodis-
perse sediment grains.

Balancing fluid inflow through AB with fluid outflow through CD and entrainment
or detrainment of fluid (not sediment) through AD yields

∂ (uh)

∂x
= E(x), (2.2)

where E(x) is the entrainment flux across the interface of the current and the ambient
fluid. Here the volume fraction of the sediment is neglected, consistent with estimates
of suspended sediment concentration of a few volume per cent (e.g. Bowen, Normark
& Piper 1984).

A corresponding balance can be established for the conservation of momentum. By
neglecting the effects of viscosity, bottom friction and momentum entrainment, we
obtain

∂(u2h)

∂x
+

g′

2φ0

∂(φh2)

∂x
= 0. (2.3)

Here the first term indicates the derivative of the momentum flux, while the second
term represents the hydrostatic pressure gradient. The reduced gravity g′ is defined
as g′ = π(ρp − ρa)φ0d

3
pg/6ρa , with ρp denoting the density of the sediment material,

ρa the ambient fluid density, dp the sediment grain diametre and φ0 the number
concentration of the sediment grains in the turbidity current.

As shown in figure 1, the origin of the coordinate system is located at the crest of
the levee. We complete the flow model by specifying boundary conditions at x = 0 of
the form h(0) = h0, φ(0) = φ0 and u(0) = u0.

Equations (2.1), (2.2) and (2.3) specify the solutions for u(x), h(x) and φ(x), with
the Stokes settling velocity us and the entrainment (or detrainment) rate E(x) as
parameters. The entrainment rate can depend on a number of flow features, such as
the overall Reynolds number of the flow, the particle settling velocity or the local
sediment concentration. In order to clarify the influence of E(x) on the character
of the overflow current, and consequently on the levee shape, we will focus on the
two representative cases in which we assume either E(x) = 0 (zero entrainment) or
E(x) = E0 (constant entrainment or detrainment). For each of these cases, we will
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determine the profile of the sediment concentration as a function of the spanwise
x-distance. This, in turn, will yield the quasi-steady sedimentation rate, and hence the
levee height, as functions of x.

2.1. Zero entrainment

By employing the chain rule, we can rewrite the sediment conservation equation (2.1)
as

φ
∂ (uh)

∂x
+ uh

∂φ

∂x
= −φus. (2.4)

For E(x) = 0, the fluid conservation equation (2.2) yields uh =(uh)0 = A0, so that
equation (2.4) yields for the quasi-steady, depth-averaged sediment concentration

φ(x) = φ0e
−(us/A0)x. (2.5)

Hence, without entrainment the sediment concentration in the overflow current decays
exponentially with the distance from the levee crest. Since the settling velocity is
independent of the sediment concentration, the rate at which the overflow deposits
sediment decays exponentially as well. Finally, since the flow field is steady, the height
of the levee formed by this deposit also decays exponentially, with an exponent
proportional to the settling velocity of the sediment grains. Note that in the above
conservation equations u and h do not appear individually, but only as the product
uh. Consequently, the levee shape can be determined from the fluid and sediment
conservation equations alone, i.e. from kinematic considerations, while the momentum
balance does not enter. However, the momentum balance needs to be invoked if u

and h are to be determined individually.

2.2. Constant entrainment

For E(x) = E0, the fluid conservation equation (2.2) yields uh = E0x + B0, so that the
expanded sediment conservation equation (2.4) simplifies to

E0φ + (E0x + B0)
∂φ

∂x
= −φus. (2.6)

By rescaling the spanwise coordinate x and shifting its origin such that x̂ = E0x + B0,
the solution in terms of the rescaled distance x̂ takes the form

φ(x̂) = φ0 (B0/x̂)
us+E0

E0 . (2.7)

Hence, following the same line of reasoning as for the zero entrainment case, an
overflow current with constant entrainment of ambient fluid forms a levee whose
height exhibits a power law decay. Note that E0 can be positive (net entrainment)
or negative (net detrainment). The fastest possible detrainment of fluid from the
overflow current occurs when the interface separating the overflow current from the
ambient fluid shifts downward with the settling velocity of the sediment grains, so
that E0 = −us . In this case, φ(x) is constant. For E0 > −us , φ is a decreasing function
of x, so that the sediment becomes more diluted as it moves away from the centre of
the turbidity current.

3. Navier–Stokes simulations
To test the predictions obtained from the above shallow water model, we conduct

time-dependent, two-dimensional Navier–Stokes simulations in the Boussinesq limit.
The setup shown in figure 3 captures the flow in a cross-section perpendicular to the
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Figure 3. A domain of length L and height H is used to simulate the overflow current. The
elliptical region in the bottom left corner represents the cross-section of main turbidity current.
In this region, the dimensionless sediment concentration is maintained at c = 1 for all times.
This sediment feeds a depositional overflow current propagating to the right, which eventually
reaches a steady state whose characteristics determine the levee shape.

main propagation direction of the turbidity current: a computational domain of width
L and height H is, for the most part, initially filled with clear fluid of density ρa . The
small elliptical region in the bottom left-hand corner of the domain represents the
cross-section of the turbidity current. In this region we maintain a sediment number
concentration c = c0 for all times. Note that the shape of this region has a negligible
influence on the quasi-steady flow that evolves for long times.

For dilute mixtures, the governing Navier–Stokes equations are derived and dis-
cussed in Necker et al. (2002, 2005) and Blanchette et al. (2005). Those authors show
that the conservation of mass, momentum and sediment is described by

∂ul

∂xl

= 0, (3.1)

∂ui

∂t
+ ul

∂ui

∂xl

= − ∂p

∂xi

+
1

Re

∂2ui

∂xl∂xl

+ ce
g
i , (3.2)

∂c

∂t
+

(
ul + use

g
l

) ∂c

∂xl

=
1

ReSc

∂2c

∂xl∂xl

, (3.3)

where the summation convention has been used. Here, lengths and velocities are non-
dimensionalized with the domain height H and the buoyancy velocity ub =

√
g′H ,

respectively. The latter provides a characteristic scale for the velocity induced by
the density variations. Note that any length scale could have been chosen to define
the buoyancy velocity, since the only goal is to determine whether the levee decays
exponentially or algebraically. Time and pressure scales are provided by H/ub and
ρau

2
b, while concentration is normalized by c0. The unit vector in the direction of the

gravitational acceleration is denoted by e
g
i . As dimensionless parameters we obtain the

Reynolds number Re = ubH/ν and the Schmidt number Sc = ν/κ , in addition to the
normalized settling velocity us . Here, ν and κ denote an effective eddy viscosity and
diffusivity, respectively, for momentum and the sediment grains. Since for a complex
flow such as the present one (particle-laden fluid with varying sediment concentration,
near a sediment bed), we do not know the precise spatial dependence of ν and κ ,
we assume that, as a first approximation, they are spatially invariant. This approach
avoids the introduction of additional dimensionless parameters.

The left domain boundary is treated as symmetry planes. The same treatment
is applied to the right boundary, which is justified since the current decays long
before reaching this boundary. A no-flux condition for the sediment concentration
is enforced at the top boundary, while the sediment grains are allowed to settle
out of the computational domain at the bottom boundary via an ‘outflow’ boundary
condition (Necker et al. 2002, 2005). The change in the shape of the bottom boundary
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Figure 4. sediment concentration contours of an overflow current with Re = 2000, Sc = 1 and
us = 0.01 at t = 12 and 160. The contour levels displayed are φ = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7 and 0.8. The steady state is reached around t =160.

due to accumulating sediment is neglected. For the fluid velocity, we employ no-slip
(slip) conditions at the top and bottom (left and right) boundaries. Initially, the fluid
is at rest everywhere. We solve the above equations in the vorticity-streamfunction
formulation, employing a pseudo-spectral approach in the x-direction, 6th order
compact finite differences in the y-direction, and a 3rd order, low storage Runge-
Kutta scheme. Further details of the computational technique can be found in Härtel,
Meiburg & Necker (2000).

We perform time-dependent numerical simulations for the above setup, until a
steady state overflow current has evolved. The functions h(x), φ(x) and u(x) obtained
from this steady state can then be compared directly with the shallow water model
results.

4. Simulation results
Numerical simulations have been performed for the three different settling

velocities us = 0.005, 0.01 and 0.03, along with Re = 2000 and 10 000, and Sc =1. As
dimensionless values, these settling velocities indicate fractions of the characteristic
velocity. Since the velocity of the overflow current at the levee crest is of the same
order as the buoyancy velocity, the dimensionless settling velocity values roughly
correspond to fractions of the overflow current velocity. Hence, depending on the
dimensional velocity of the overflow current, they may correspond to typical values
for silt or sand. The value of Re =2000 was chosen to be sufficiently large for the
steady state of the flow to be effectively independent of Re, so that the results can be
compared with the shallow water analysis.

To study the effects of larger entrainment, we performed one simulation with
us = 0.01, Re = 2000 and Sc = 0.1. Figure 4 displays representative sediment concen-
tration contours for the flow with us = 0.01 and Sc = 1. The overflow current initially
forms close to the left boundary and subsequently propagates along the bottom wall.
As the sediment settles out, the current gradually loses its driving force until it finally
reaches its steady, maximum runout length. In this state, the supply of sediment from
the turbidity current is balanced by the loss of sediment due to deposition along the
bottom surface, which determines the shape of the levee.

We consider the tip location xtip of the overflow current as the foremost point of
the c = 0.01 contour. Figure 5(a) shows xtip as function of time for different settling
speeds. The asymptotic formation of a steady state is clearly seen. Per definition, we
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Figure 5. (a) tip location xtip of the overflow current as function of time for various settling
speeds, at Re = 2000 and Sc = 1. Steady states are reached at t =35, 130 and 240, respectively.
(b) comparison of model prediction (solid line) and simulation results (triangles) for us =0.005
and Sc = 1. Good agreement is observed for the interval in which entrainment is negligible.
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Figure 6. (a) u(x)h(x) vs x from the numerical simulations. Linear fits of the data give
uh =0.0278 for (us, Sc) = (0.005, 1), uh = −0.0022x + 0.0437 for (0.01, 1) and uh =0.0059x +
0.043 for (0.01, 0.1). (b) comparison of model predictions (lines) and simulation results
(symbols) for flows with approximately constant entrainment or detrainment. The agreement
is satisfactory in those regions where the entrainment rate is approximately constant.

assume the steady state to have been reached when the tip velocity has decreased to
0.01. Accordingly, the steady states are established at times 35, 130 and 240, respec-
tively, for settling velocities of 0.03, 0.01 and 0.005.

5. Comparison of model predictions and simulation results
As a first step, we need to further process the simulation results in order to extract

information on h(x), φ(x) and u(x). These quantities are defined, respectively, as

h(x) =

∫ 1

0

c(x, y)

c(x, 0)
dy, φ(x) =

1

h(x)

∫ h(x)

0

c(x, y) dy and u(x) =
1

h(x)

∫ h(x)

0

u(x, y) dy.

(5.1)
In the case of low entrainment, when uh is approximately constant, the simulation
results are to be compared to equation (2.5). For an approximately constant rate of
entrainment uh should vary linearly with x, and the results should be compared with
equation (2.7).

Figure 6(a) shows the variation of u(x)h(x) with x for the simulations with
(us, Sc) = (0.005, 1), (0.01, 1) and (0.01, 0.1). Symbols indicate the simulation results,
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while lines show linear fits. For (0.005, 1), the value of u(x)h(x) is approximately
constant in the interval 3 <x < 12, indicating that very little entrainment takes place.
For (0.01, 1), u(x)h(x) exhibits an approximately linear decrease for 3 <x < 10, as a
result of a nearly constant detrainment. In contrast, the case (0.01, 0.1) gives rise to
nearly constant entrainment, resulting in an approximately linear increase of u(x)h(x)
in the region 2 < x < 5.

For the case of (us, Sc) = (0.005, 1), a linear fit of the data gives uh =A0 = 0.0278,
so that equation (2.5) yields φ(x) ∼ e−0.18x . This result is shown in figure 5(b) as a solid
line, while the triangle symbols represent the corresponding simulation results for φ(x).
Very good agreement is observed over the interval for which figure 6(a) had indicated
approximately negligible entrainment. Similarly, we obtain for (us, Sc) = (0.01, 1) that
E(x) = −0.0022 and uh = −0.0022x +0.0437. Equation (2.7) yields φ(x) ∼ x3.55, where
x = −0.0022x + 0.0437. Figure 6(b) indicates good agreement of simulation data
and model predictions for the x-interval in which the model can be expected
to apply. Finally, for the positive entrainment case (us, Sc) = (0.01, 0.1) we obtain
E(x) = 0.0059 and uh = 0.0059x + 0.043, so that equation (2.7) predicts φ(x) ∼ x−2.7,
where x = 0.0059x + 0.043. Again, figure 6(b) shows good agreement. Furthermore,
note that an increase in Re from 2000 to 10 000 does not change the results
significantly. Overall, we observe that in all cases the model provides acceptable
predictions for the levee shapes. Deviations are mostly limited to the root and/or the
tip of the overflow current, where the vertical velocities cannot be neglected.

In conclusion, the present investigation develops a simple shallow water model
for the overflow currents that govern the levee formation, based on a steady state
balance of sediment supply by the turbidity current, and sediment deposition onto
the levee. The model demonstrates that entrainment is the determining factor for the
levee shape, a result that is confirmed by two-dimensional, unsteady Navier–Stokes
simulations.

We acknowledge financial support from a consortium of oil companies including
BG Group, BP, BHP Billiton Petroleum, Chevron, ConocoPhillips, Hydro, Hess,
Maersk Oil, Marathon Oil, Murphy Oil, Petrobras, Statoil and Total, as well as the
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